Show simple item record

dc.contributor.authorCanonne, Clement
dc.contributor.authorRubinfeld, Ronitt
dc.date.accessioned2016-01-27T16:55:34Z
dc.date.available2016-01-27T16:55:34Z
dc.date.issued2014
dc.identifier.isbn978-3-662-43947-0
dc.identifier.isbn978-3-662-43948-7
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/101001
dc.description.abstractIn this paper, we analyze and study a hybrid model for testing and learning probability distributions. Here, in addition to samples, the testing algorithm is provided with one of two different types of oracles to the unknown distribution D over [n]. More precisely, we consider both the dual and cumulative dual access models, in which the algorithm A can both sample from D and respectively, for any i ∈ [n], query the probability mass D(i) (query access); or get the total mass of {1,…,i}, i.e. ∑[i over j=1] D(j) (cumulative access) In these two models, we bypass the strong lower bounds established in both of the previously studied sampling and query oracle settings for a number of problems, giving constant-query algorithms for most of them. Finally, we show that while the testing algorithms can be in most cases strictly more efficient, some tasks remain hard even with this additional power.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-1217423)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-1065125)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-662-43948-7_24en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTesting Probability Distributions Underlying Aggregated Dataen_US
dc.typeArticleen_US
dc.identifier.citationCanonne, Clement, and Ronitt Rubinfeld. “Testing Probability Distributions Underlying Aggregated Data.” Lecture Notes in Computer Science (2014): 283–295.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorRubinfeld, Ronitten_US
dc.relation.journalAutomata, Languages, and Programmingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCanonne, Clement; Rubinfeld, Ronitten_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4353-7639
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record