MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Visual precis generation using coresets

Author(s)
Paul, Rohan; Feldman, Dan; Newman, Paul; Rus, Daniela L.
Thumbnail
DownloadRus_Visual precis.pdf (2.204Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Given an image stream, our on-line algorithm will select the semantically-important images that summarize the visual experience of a mobile robot. Our approach consists of data pre-clustering using coresets followed by a graph based incremental clustering procedure using a topic based image representation. A coreset for an image stream is a set of representative images that semantically compresses the data corpus, in the sense that every frame has a similar representative image in the coreset. We prove that our algorithm efficiently computes the smallest possible coreset under natural well-defined similarity metric and up to provably small approximation factor. The output visual summary is computed via a hierarchical tree of coresets for different parts of the image stream. This allows multi-resolution summarization (or a video summary of specified duration) in the batch setting and a memory-efficient incremental summary for the streaming case.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/101028
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)
Citation
Paul, Rohan, Dan Feldman, Daniela Rus, and Paul Newman. “Visual Precis Generation Using Coresets.” 2014 IEEE International Conference on Robotics and Automation (ICRA) (May 2014).
Version: Author's final manuscript
ISBN
978-1-4799-3685-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.