Show simple item record

dc.contributor.authorFeldman, Dan
dc.contributor.authorSugaya, Andrew
dc.contributor.authorSung, Cynthia Rueyi
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2016-01-29T00:58:54Z
dc.date.available2016-01-29T00:58:54Z
dc.date.issued2013-11
dc.identifier.isbn9781450320276
dc.identifier.isbn978-1-4503-1169-4
dc.identifier.urihttp://hdl.handle.net/1721.1/101031
dc.description.abstractThis paper describes a system that takes as input GPS data streams generated by users' phones and creates a searchable database of locations and activities. The system is called iDiary and turns large GPS signals collected from smartphones into textual descriptions of the trajectories. The system features a user interface similar to Google Search that allows users to type text queries on their activities (e.g., "Where did I buy books?") and receive textual answers based on their GPS signals. iDiary uses novel algorithms for semantic compression (known as coresets) and trajectory clustering of massive GPS signals in parallel to compute the critical locations of a user. Using an external database, we then map these locations to textual descriptions and activities so that we can apply text mining techniques on the resulting data (e.g. LSA or transportation mode recognition). We provide experimental results for both the system and algorithms and compare them to existing commercial and academic state-of-the-art. This is the first GPS system that enables text-searchable activities from GPS data.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant ONR-MURI Award N00014-12-1-1000)en_US
dc.description.sponsorshipHon Hai/Foxconn International Holdings Ltd.en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology Centeren_US
dc.description.sponsorshipSingapore. National Research Foundationen_US
dc.description.sponsorshipUnited States. Dept. of Defense. National Defense Science & Engineering Graduate Fellowship Programen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2517351.2517366en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleiDiary: from GPS signals to a text-searchable diaryen_US
dc.typeArticleen_US
dc.identifier.citationDan Feldman, Andrew Sugaya, Cynthia Sung, and Daniela Rus. 2013. iDiary: from GPS signals to a text-searchable diary. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys '13). ACM, New York, NY, USA, Article 6, 12 pages.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorFeldman, Danen_US
dc.contributor.mitauthorSugaya, Andrewen_US
dc.contributor.mitauthorSung, Cynthia Rueyien_US
dc.contributor.mitauthorRus, Daniela L.en_US
dc.relation.journalProceedings of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys '13)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsFeldman, Dan; Sugaya, Andrew; Sung, Cynthia; Rus, Danielaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
dc.identifier.orcidhttps://orcid.org/0000-0002-8967-1841
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record