Show simple item record

dc.contributor.authorMarchese, Andrew Dominic
dc.contributor.authorTedrake, Russell Louis
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2016-01-29T02:17:47Z
dc.date.available2016-01-29T02:17:47Z
dc.date.issued2015-05
dc.identifier.isbn978-1-4799-6923-4
dc.identifier.urihttp://hdl.handle.net/1721.1/101035
dc.description.abstractThe goal of this work is to develop a soft robotic manipulation system that is capable of autonomous, dynamic, and safe interactions with humans and its environment. First, we develop a dynamic model for a multi-body fluidic elastomer manipulator that is composed entirely from soft rubber and subject to the self-loading effects of gravity. Then, we present a strategy for independently identifying all unknown components of the system: the soft manipulator, its distributed fluidic elastomer actuators, as well as drive cylinders that supply fluid energy. Next, using this model and trajectory optimization techniques we find locally optimal open-loop policies that allow the system to perform dynamic maneuvers we call grabs. In 37 experimental trials with a physical prototype, we successfully perform a grab 92% of the time. By studying such an extreme example of a soft robot, we can begin to solve hard problems inhibiting the mainstream use of soft machines.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1117178)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant EAGER 1133224)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS1226883)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF1138967)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship (Award 1122374)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2015.7139538en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleDynamics and trajectory optimization for a soft spatial fluidic elastomer manipulatoren_US
dc.typeArticleen_US
dc.identifier.citationMarchese, Andrew D., Russ Tedrake, and Daniela Rus. “Dynamics and Trajectory Optimization for a Soft Spatial Fluidic Elastomer Manipulator.” 2015 IEEE International Conference on Robotics and Automation (ICRA) (May 2015).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorMarchese, Andrew Dominicen_US
dc.contributor.mitauthorTedrake, Russell Louisen_US
dc.contributor.mitauthorRus, Daniela L.en_US
dc.relation.journalProceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMarchese, Andrew D.; Tedrake, Russ; Rus, Danielaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
dc.identifier.orcidhttps://orcid.org/0000-0002-8712-7092
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record