MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coresets for k-Segmentation of Streaming Data

Author(s)
Rosman, Guy; Volkov, Mikhail; Feldman, Dan; Fisher III, John W.; Rus, Daniela L.
Thumbnail
DownloadRus_Coresets for.pdf (472.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Life-logging video streams, financial time series, and Twitter tweets are a few examples of high-dimensional signals over practically unbounded time. We consider the problem of computing optimal segmentation of such signals by k-piecewise linear function, using only one pass over the data by maintaining a coreset for the signal. The coreset enables fast further analysis such as automatic summarization and analysis of such signals. A coreset (core-set) is a compact representation of the data seen so far, which approximates the data well for a specific task -- in our case, segmentation of the stream. We show that, perhaps surprisingly, the segmentation problem admits coresets of cardinality only linear in the number of segments k, independently of both the dimension d of the signal, and its number n of points. More precisely, we construct a representation of size O(klog n/ε[superscript 2]) that provides a (1 + ε)-approximation for the sum of squared distances to any given k-piecewise linear function. Moreover, such coresets can be constructed in a parallel streaming approach. Our results rely on a novel eduction of statistical estimations to problems in computational geometry. We empirically evaluate our algorithms on very large synthetic and real data sets from GPS, video and financial domains, using 255 machines in Amazon cloud.
Date issued
2014
URI
http://hdl.handle.net/1721.1/101037
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advances in Neural Information Processing Systems (NIPS)
Publisher
Neural Information Processing Systems Foundation
Citation
Rosman, Guy, Mikhail Volkov, Danny Feldman, John W. Fisher III, and Daniela Rus. "Coresets for k-Segmentation of Streaming Data." Advances in Neural Information Processing Systems 27 (NIPS 2014).
Version: Final published version
ISSN
1049-5258

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.