MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors

Author(s)
Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Oelker, Eric Glenn; Evans, Matthew J; ... Show more Show less
Thumbnail
DownloadPhysRevLett.116.041102.pdf (1.747Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer’s readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum’s squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/101074
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Oelker, Eric, Tomoki Isogai, John Miller, Maggie Tse, Lisa Barsotti, Nergis Mavalvala, and Matthew Evans. "Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors." Phys. Rev. Lett. 116, 041102 (January 2016). © 2016 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.