Show simple item record

dc.contributor.authorXu, Kun
dc.contributor.authorTian, Xuejun
dc.contributor.authorMovassaghi, Mohammad
dc.contributor.authorKuperwasser, Charlotte
dc.contributor.authorOh, Sun Y.
dc.contributor.authorNaber, Stephen P.
dc.contributor.authorBuchsbaum, Rachel J.
dc.date.accessioned2016-02-03T17:16:31Z
dc.date.available2016-02-03T17:16:31Z
dc.date.issued2016-01
dc.date.submitted2015-07
dc.identifier.issn1465-542X
dc.identifier.issn1465-5411
dc.identifier.urihttp://hdl.handle.net/1721.1/101083
dc.description.abstractBackground The tumor microenvironment has complex effects in cancer pathophysiology that are not fully understood. Most cancer therapies are directed against malignant cells specifically, leaving pro-malignant signals from the microenvironment unaddressed. Defining specific mechanisms by which the tumor microenvironment contributes to breast cancer metastasis may lead to new therapeutic approaches against advanced breast cancer. Methods We use a novel method for manipulating three-dimensional mixed cell co-cultures, along with studies in mouse xenograft models of human breast cancer and a histologic study of human breast cancer samples, to investigate how breast cancer-associated fibroblasts affect the malignant behaviors of breast cancer cells. Results Altering fibroblast Tiam1 expression induces changes in invasion, migration, epithelial-mesenchymal transition, and cancer stem cell characteristics in associated breast cancer cells. These changes are both dependent on fibroblast secretion of osteopontin and also long-lasting even after cancer cell dissociation from the fibroblasts, indicating a novel Tiam1-osteopontin pathway in breast cancer-associated fibroblasts. Notably, inhibition of fibroblast osteopontin with low doses of a novel small molecule prevents lung metastasis in a mouse model of human breast cancer metastasis. Moreover, fibroblast expression patterns of Tiam1 and osteopontin in human breast cancers show converse changes correlating with invasion, supporting the hypothesis that this pathway in tumor-associated fibroblasts regulates breast cancer invasiveness in human disease and is thus clinically relevant. Conclusions These findings suggest a new therapeutic paradigm for preventing breast cancer metastasis. Pro-malignant signals from the tumor microenvironment with long-lasting effects on associated cancer cells may perpetuate the metastatic potential of developing cancers. Inhibition of these microenvironment signals represents a new therapeutic strategy against cancer metastasis that enables targeting of stromal cells with less genetic plasticity than associated cancer cells and opens new avenues for investigation of novel therapeutic targets and agents.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (GM074825)en_US
dc.publisherBioMed Centralen_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/s13058-016-0674-8en_US
dc.rightsCreative Commons Attributionen_US
dc.sourceBioMed Centralen_US
dc.titleThe fibroblast Tiam1-osteopontin pathway modulates breast cancer invasion and metastasisen_US
dc.typeArticleen_US
dc.identifier.citationXu, Kun, Xuejun Tian, Sun Y. Oh, Mohammad Movassaghi, Stephen P. Naber, Charlotte Kuperwasser, and Rachel J. Buchsbaum. “The Fibroblast Tiam1-Osteopontin Pathway Modulates Breast Cancer Invasion and Metastasis.” Breast Cancer Res 18, no. 1 (January 28, 2016).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorMovassaghi, Mohammaden_US
dc.relation.journalBreast Cancer Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-01-29T05:25:51Z
dc.language.rfc3066en
dc.rights.holderXu et al.
dspace.orderedauthorsXu, Kun; Tian, Xuejun; Oh, Sun Y.; Movassaghi, Mohammad; Naber, Stephen P.; Kuperwasser, Charlotte; Buchsbaum, Rachel J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3080-1063
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record