Show simple item record

dc.contributor.authorCourties, Gabriel
dc.contributor.authorHeidt, Timo
dc.contributor.authorSebas, Matthew
dc.contributor.authorIwamoto, Yoshiko
dc.contributor.authorJeon, Derrick
dc.contributor.authorTruelove, Jessica
dc.contributor.authorTricot, Benoit
dc.contributor.authorWojtkiewicz, Greg
dc.contributor.authorDutta, Partha
dc.contributor.authorSager, Hendrik B.
dc.contributor.authorBorodovsky, Anna
dc.contributor.authorNovobrantseva, Tatiana I.
dc.contributor.authorKlebanov, Boris
dc.contributor.authorFitzgerald, Kevin
dc.contributor.authorLibby, Peter
dc.contributor.authorSwirski, Filip K.
dc.contributor.authorWeissleder, Ralph
dc.contributor.authorNahrendorf, Matthias
dc.contributor.authorAnderson, Daniel Griffith
dc.date.accessioned2016-02-09T15:16:07Z
dc.date.available2016-02-09T15:16:07Z
dc.date.issued2013-12
dc.date.submitted2013-10
dc.identifier.issn07351097
dc.identifier.urihttp://hdl.handle.net/1721.1/101129
dc.description.abstractObjectives The aim of this study was to test whether silencing of the transcription factor interferon regulatory factor 5 (IRF5) in cardiac macrophages improves infarct healing and attenuates post–myocardial infarction (MI) remodeling. Background In healing wounds, the M1 toward M2 macrophage phenotype transition supports resolution of inflammation and tissue repair. Persistence of inflammatory M1 macrophages may derail healing and compromise organ functions. The transcription factor IRF5 up-regulates genes associated with M1 macrophages. Methods Here we used nanoparticle-delivered small interfering ribonucleic acid (siRNA) to silence IRF5 in macrophages residing in MIs and in surgically-induced skin wounds in mice. Results Infarct macrophages expressed high levels of IRF5 during the early inflammatory wound-healing stages (day 4 after coronary ligation), whereas expression of the transcription factor decreased during the resolution of inflammation (day 8). Following in vitro screening, we identified an siRNA sequence that, when delivered by nanoparticles to wound macrophages, efficiently suppressed expression of IRF5 in vivo. Reduction of IRF5 expression, a factor that regulates macrophage polarization, reduced expression of inflammatory M1 macrophage markers, supported resolution of inflammation, accelerated cutaneous and infarct healing, and attenuated development of post-MI heart failure after coronary ligation as measured by protease targeted fluorescence molecular tomography–computed tomography imaging and cardiac magnetic resonance imaging (p < 0.05). Conclusions This work identified a new therapeutic avenue to augment resolution of inflammation in healing infarcts by macrophage phenotype manipulation. This therapeutic concept may be used to attenuate post-MI remodeling and heart failure.en_US
dc.description.sponsorshipNational Heart, Lung, and Blood Institute (Contract HHSN268201000044C)en_US
dc.description.sponsorshipNational Heart, Lung, and Blood Institute (Grant R01-HL096576)en_US
dc.description.sponsorshipNational Heart, Lung, and Blood Institute (Grant R01-HL095629)en_US
dc.description.sponsorshipNational Heart, Lung, and Blood Institute (Grant R01-HL114477)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jacc.2013.11.023en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleIn Vivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healingen_US
dc.typeArticleen_US
dc.identifier.citationCourties, Gabriel, Timo Heidt, Matthew Sebas, Yoshiko Iwamoto, Derrick Jeon, Jessica Truelove, Benoit Tricot, et al. “In Vivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healing.” Journal of the American College of Cardiology 63, no. 15 (April 2014): 1556–1566.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorAnderson, Daniel Griffithen_US
dc.relation.journalJournal of the American College of Cardiologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCourties, Gabriel; Heidt, Timo; Sebas, Matthew; Iwamoto, Yoshiko; Jeon, Derrick; Truelove, Jessica; Tricot, Benoit; Wojtkiewicz, Greg; Dutta, Partha; Sager, Hendrik B.; Borodovsky, Anna; Novobrantseva, Tatiana; Klebanov, Boris; Fitzgerald, Kevin; Anderson, Daniel G.; Libby, Peter; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthiasen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record