Show simple item record

dc.contributor.authorFerguson, Andrew L.
dc.contributor.authorMann, Jaclyn K.
dc.contributor.authorOmarjee, Saleha
dc.contributor.authorNdung'u, Thumbi
dc.contributor.authorWalker, Bruce D.
dc.contributor.authorChakraborty, Arup K.
dc.contributor.authorFerguson, Andrew L.
dc.date.accessioned2016-02-11T01:51:36Z
dc.date.available2016-02-11T01:51:36Z
dc.date.issued2013-03
dc.date.submitted2012-06
dc.identifier.issn10747613
dc.identifier.issn1097-4180
dc.identifier.urihttp://hdl.handle.net/1721.1/101155
dc.description.abstractA prophylactic or therapeutic vaccine offers the best hope to curb the HIV-AIDS epidemic gripping sub-Saharan Africa, but it remains elusive. A major challenge is the extreme viral sequence variability among strains. Systematic means to guide immunogen design for highly variable pathogens like HIV are not available. Using computational models, we have developed an approach to translate available viral sequence data into quantitative landscapes of viral fitness as a function of the amino acid sequences of its constituent proteins. Predictions emerging from our computationally defined landscapes for the proteins of HIV-1 clade B Gag were positively tested against new in vitro fitness measurements and were consistent with previously defined in vitro measurements and clinical observations. These landscapes chart the peaks and valleys of viral fitness as protein sequences change and inform the design of immunogens and therapies that can target regions of the virus most vulnerable to selection pressure.en_US
dc.description.sponsorshipRagon Institute of MGH, MIT and Harvarden_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Director's Pioneer Award)en_US
dc.description.sponsorshipRagon Institute of MGH, MIT and Harvard (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherElsevier/Cell Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.immuni.2012.11.022en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleTranslating HIV Sequences into Quantitative Fitness Landscapes Predicts Viral Vulnerabilities for Rational Immunogen Designen_US
dc.typeArticleen_US
dc.identifier.citationFerguson, Andrew L., Jaclyn K. Mann, Saleha Omarjee, Thumbi Ndung’u, Bruce D. Walker, and Arup K. Chakraborty. “Translating HIV Sequences into Quantitative Fitness Landscapes Predicts Viral Vulnerabilities for Rational Immunogen Design.” Immunity 38, no. 3 (March 2013): 606–617.en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorFerguson, Andrew L.en_US
dc.contributor.mitauthorChakraborty, Arup K.en_US
dc.relation.journalImmunityen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFerguson, Andrew L.; Mann, Jaclyn K.; Omarjee, Saleha; Ndung’u, Thumbi; Walker, Bruce D.; Chakraborty, Arup K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1268-9602
dc.identifier.orcidhttps://orcid.org/0000-0002-8829-9726
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record