MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal control of one-dimensional cellular uptake in tissue engineering

Author(s)
Kishida, Masako; Ford Versypt, Ashlee N.; Pack, Daniel W.; Braatz, Richard D.
Thumbnail
DownloadBraatz_Optimal control.pdf (1.535Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
A control problem motivated by tissue engineering is formulated and solved, in which control of the uptake of growth factors (signaling molecules) is necessary to spatially and temporally regulate cellular processes for the desired growth or regeneration of a tissue. Four approaches are compared for determining one-dimensional optimal boundary control trajectories for a distributed parameter model with reaction, diffusion, and convection: (i) basis function expansion, (ii) method of moments, (iii) internal model control, and (iv) model predictive control (MPC). The proposed method of moments approach is computationally efficient while enforcing a nonnegativity constraint on the control input. Although more computationally expensive than methods (i)–(iii), the MPC formulation significantly reduced the computational cost compared with simultaneous optimization of the entire control trajectory. A comparison of the pros and cons of each of the four approaches suggests that an algorithm that combines multiple approaches is most promising for solving the optimal control problem for multiple spatial dimensions.
Date issued
2012-08
URI
http://hdl.handle.net/1721.1/101163
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Optimal Control Applications and Methods
Publisher
Wiley Blackwell
Citation
Kishida, Masako, Ashlee N. Ford Versypt, Daniel W. Pack, and Richard D. Braatz. “Optimal Control of One-Dimensional Cellular Uptake in Tissue Engineering.” Optim. Control Appl. Meth. 34, no. 6 (August 23, 2012): 680–695.
Version: Author's final manuscript
ISSN
01432087
1099-1514

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.