MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate

Author(s)
Kedia, Kushal S.; Ghoniem, Ahmed F.
Thumbnail
DownloadGhoniem_An analytical model.pdf (413.6Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The dynamic response of a premixed flame stabilized on a heat-conducting perforated plate depends critically on their coupled thermal interaction. The objective of this paper is to develop an analytical model to capture this coupling. The model predicts the mean flame base standoff distance; the flame base area, curvature and speed; and the burner plate temperature given the operating conditions; the mean velocity, temperature and equivalence ratio of the reactants; thermal conductivity and the perforation ratio of the burner. This coupled model is combined with our flame transfer function (FTF) model to predict the dynamic response of the flame to velocity perturbations. We show that modeling the thermal coupling between the flame and the burner, while accounting for the two-dimensionality of the former, is critical to predicting the dynamic response characteristics such as the overshoot in the gain curve (resonant condition) and the phase delay. Good agreement with the numerical and experimental results is demonstrated over a range of conditions.
Date issued
2012-07
URI
http://hdl.handle.net/1721.1/101215
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Proceedings of the Combustion Institute
Publisher
Elsevier
Citation
Kedia, Kushal S., and Ahmed F. Ghoniem. “An Analytical Model for the Prediction of the Dynamic Response of Premixed Flames Stabilized on a Heat-Conducting Perforated Plate.” Proceedings of the Combustion Institute 34, no. 1 (January 2013): 921–928.
Version: Author's final manuscript
ISSN
15407489

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.