Show simple item record

dc.contributor.authorStenger, Andrew R.
dc.contributor.authorGupta, Apoorv
dc.contributor.authorConnors, Neal C.
dc.contributor.authorBrockman Reizman, Irene M.
dc.contributor.authorReisch, Christopher R.
dc.contributor.authorPrather, Kristala L. Jones
dc.date.accessioned2016-02-22T16:01:14Z
dc.date.available2016-02-22T16:01:14Z
dc.date.issued2015-09
dc.date.submitted2015-09
dc.identifier.issn22140301
dc.identifier.urihttp://hdl.handle.net/1721.1/101230
dc.description.abstractD-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed ( Moon et al., 2009), but previous work with the glucaric acid pathway has indicated that competition with endogenous metabolism may limit carbon flux into the pathway. Our group has recently developed an E. coli strain where phosphofructokinase (Pfk) activity can be dynamically controlled and demonstrated its use for improving yields and titers of the glucaric acid precursor myo-inositol on glucose minimal medium. In this work, we have explored the further applicability of this strain for glucaric acid production in a supplemented medium more relevant for scale-up studies, both under batch conditions and with glucose feeding via in situ enzymatic starch hydrolysis. It was found that glucaric acid titers could be improved by up to 42% with appropriately timed knockdown of Pfk activity during glucose feeding. The glucose feeding protocol could also be used for reduction of acetate production in the wild type and modified E. coli strains.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant CBET-0954986)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Synthetic Biology Engineering Research Center (Grant EEC-0540879)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.). Biotechnology Training Program (Grant T32GM008334)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.meteno.2015.09.002en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevier Open Accessen_US
dc.titleImprovement of glucaric acid production in E. coli via dynamic control of metabolic fluxesen_US
dc.typeArticleen_US
dc.identifier.citationReizman, Irene M. Brockman, Andrew R. Stenger, Chris R. Reisch, Apoorv Gupta, Neal C. Connors, and Kristala L.J. Prather. “Improvement of Glucaric Acid Production in E. Coli via Dynamic Control of Metabolic Fluxes.” Metabolic Engineering Communications 2 (December 2015): 109–116.en_US
dc.contributor.departmentMIT Synthetic Biology Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorReisch, Christopher R.en_US
dc.contributor.mitauthorBrockman Reizman, Irene M.en_US
dc.contributor.mitauthorGupta, Apoorven_US
dc.contributor.mitauthorPrather, Kristala L. Jonesen_US
dc.relation.journalMetabolic Engineering Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsReizman, Irene M. Brockman; Stenger, Andrew R.; Reisch, Chris R.; Gupta, Apoorv; Connors, Neal C.; Prather, Kristala L.J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0437-3157
dc.identifier.orcidhttps://orcid.org/0000-0002-4908-3914
dc.identifier.orcidhttps://orcid.org/0000-0002-6548-9420
dc.identifier.orcidhttps://orcid.org/0000-0003-0585-2213
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record