Show simple item record

dc.contributor.authorGhaderi, Adel
dc.contributor.authorZhou, Hang
dc.contributor.authorAgresti, Jeremy
dc.contributor.authorStephanopoulos, Gregory
dc.contributor.authorWang, Benjamin L.
dc.contributor.authorWeitz, David A.
dc.contributor.authorFink, Gerald R
dc.date.accessioned2016-02-23T00:42:50Z
dc.date.available2016-02-23T00:42:50Z
dc.date.issued2014-04
dc.date.submitted2013-10
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/101236
dc.description.abstractPhenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to compartmentalize individual cells for growth and analysis in monodisperse nanoliter aqueous droplets surrounded by an immiscible fluorinated oil phase. We use this system to identify xylose-overconsuming Saccharomyces cerevisiae cells from a population containing one such cell per 10[superscript 4] cells and to screen a genomic library to identify multiple copies of the xylose isomerase gene as a genomic change contributing to high xylose consumption, a trait important for lignocellulosic feedstock utilization. We also enriched L-lactate–producing Escherichia coli clones 5,800× from a population containing one L-lactate producer per 10[superscript 4] D-lactate producers. Our approach has broad applications for single-cell analyses, such as in strain selection for the overproduction of fuels, chemicals and pharmaceuticals.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Grant DE-FC36-07G017058)en_US
dc.description.sponsorshipRoyal Dutch-Shell Groupen_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technologyen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.2857en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleMicrofluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumptionen_US
dc.typeArticleen_US
dc.identifier.citationWang, Benjamin L, Adel Ghaderi, Hang Zhou, Jeremy Agresti, David A Weitz, Gerald R Fink, and Gregory Stephanopoulos. “Microfluidic High-Throughput Culturing of Single Cells for Selection Based on Extracellular Metabolite Production or Consumption.” Nature Biotechnology 32, no. 5 (April 6, 2014): 473–478.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorWang, Benjamin L.en_US
dc.contributor.mitauthorGhaderi, Adelen_US
dc.contributor.mitauthorZhou, Hangen_US
dc.contributor.mitauthorFink, Gerald R.en_US
dc.contributor.mitauthorStephanopoulos, Gregoryen_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, Benjamin L; Ghaderi, Adel; Zhou, Hang; Agresti, Jeremy; Weitz, David A; Fink, Gerald R; Stephanopoulos, Gregoryen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9869-3973
dc.identifier.orcidhttps://orcid.org/0000-0003-3704-2899
dc.identifier.orcidhttps://orcid.org/0000-0001-6909-4568
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record