MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the dual effect of glucose during production of pBAD/AraC-based minicircles

Author(s)
Simcikova, Michaela; Monteiro, Gabriel A.; Prather, Kristala L. Jones; Prazeres, Duarte M. F.
Thumbnail
DownloadPrather_On the dual.pdf (194.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Minicircles are promising vectors for DNA vaccination, gene or cell therapies due to their increased transfection efficacy and transgene expression. The in vivo production of these novel vectors involves the arabinose inducible excision of a parental molecule into a minicircircle and a miniplasmid bacterial backbone. Tight control of recombination is crucial to maximize minicircle yields and purity. In this work, a minicircle production system was constructed that relies on the enzymatic activity of ParA resolvase, a recombinase that is expressed under the transcription control of the arabinose inducible expression system pBAD/AraC, and on Escherichia coli BWAA, a strain improved for arabinose uptake. Undesired recombination already after 4 h of incubation in Luria-Bertani broth at 37 °C was observed due to the leaky expression from pBAD/AraC. While addition of glucose to the growth media repressed this leaky expression, it triggered a pH drop to 4.5 during exponential phase in shake flasks, which suppressed growth and plasmid production. The quantitative PCR analysis confirmed only few copies of high-copy number plasmid inside of the E. coli cells. To ensure the stability of minicircle-producing system, seed cultures should be grown at 30 °C with glucose overnight whereas cells for minicircle production should be grown in shake flasks at 37 °C without glucose up to early stationary phase when the recombination is induced by addition of arabinose.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/101237
Department
MIT-Portugal Program; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Vaccine
Publisher
Elsevier
Citation
Simcikova, Michaela, Kristala L.J. Prather, Duarte M.F. Prazeres, and Gabriel A. Monteiro. “On the Dual Effect of Glucose During Production of pBAD/AraC-Based Minicircles.” Vaccine 32, no. 24 (May 2014): 2843–2846.
Version: Author's final manuscript
ISSN
0264410X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.