MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering of Escherichia coli strains for plasmid biopharmaceutical production: Scale-up challenges

Author(s)
Monteiro, Gabriel A.; Goncalves, Geisa A. L.; Prather, Kristala L. Jones; Prazeres, Duarte M. F.
Thumbnail
DownloadPrather_Engineeering of.pdf (365.5Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Plasmid-based vaccines and therapeutics have been making their way into the clinic in the last years. The existence of cost-effective manufacturing processes capable of delivering high amounts of high-quality plasmid DNA (pDNA) is essential to generate enough material for trials and support future commercialization. However, the development of pDNA manufacturing processes is often hampered by difficulties in predicting process scale performance of Escherichia coli cultivation on the basis of results obtained at lab scale. This paper reports on the differences observed in pDNA production when using shake flask and bench-scale bioreactor cultivation of E. coli strains MG1655ΔendAΔrecA and DH5α in complex media with 20 g/L of glucose. MG1655ΔendAΔrecA produced 5-fold more pDNA (9.8 mg/g DCW) in bioreactor than in shake flask (1.9 mg/g DCW) and DH5α produced 4-fold more pDNA (8 mg/g DCW) in bioreactor than in shake flask (2 mg/g DCW). Accumulation of acetate was also significant in shake flasks but not in bioreactors, a fact that was attributed to a lack of control of pH.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/101245
Department
MIT-Portugal Program; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Vaccine
Publisher
Elsevier
Citation
Goncalves, Geisa A.L., Kristala L.J. Prather, Gabriel A. Monteiro, and Duarte M.F. Prazeres. “Engineering of Escherichia Coli Strains for Plasmid Biopharmaceutical Production: Scale-up Challenges.” Vaccine 32, no. 24 (May 2014): 2847–2850.
Version: Author's final manuscript
ISSN
0264410X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.