MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heteroskedasticity-robust inference in finite samples

Author(s)
Palmer, Christopher; Hausman, Jerry A.
Thumbnail
DownloadHausman_Heteroskedasticity-Robust.pdf (239.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-NoDerivatives http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Since the advent of heteroskedasticity-robust standard errors, several papers have proposed adjustments to the original White formulation. We replicate earlier findings that each of these adjusted estimators performs quite poorly in finite samples. We propose a class of alternative heteroskedasticity-robust tests of linear hypotheses based on an Edgeworth expansion of the test statistic distribution. Our preferred test outperforms existing methods in both size and power for low, moderate, and severe levels of heteroskedasticity.
Date issued
2012-02
URI
http://hdl.handle.net/1721.1/101252
Department
Massachusetts Institute of Technology. Department of Economics
Journal
Economics Letters
Publisher
Elsevier
Citation
Hausman, Jerry, and Christopher Palmer. “Heteroskedasticity-Robust Inference in Finite Samples.” Economics Letters 116, no. 2 (August 2012): 232–235.
Version: Author's final manuscript
ISSN
01651765

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.