MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene

Author(s)
Wang, Luda; Cantley, Lauren; Koenig, Steven P.; Liu, Xinghui; Pellegrino, John; Strano, Michael S.; Scott Bunch, J.; Drahushuk, Lee William; ... Show more Show less
Thumbnail
DownloadStrano_Molecular waves.pdf (1.641Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale three-dimensional printing, catalysis and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete ångström-sized pores in monolayer graphene can be detected and then controlled using nanometre-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid-state nanopores.
Date issued
2015-08
URI
http://hdl.handle.net/1721.1/101263
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Nanotechnology
Publisher
Nature Publishing Group
Citation
Wang, Luda, Lee W. Drahushuk, Lauren Cantley, Steven P. Koenig, Xinghui Liu, John Pellegrino, Michael S. Strano, and J. Scott Bunch. “Molecular Valves for Controlling Gas Phase Transport Made from Discrete ångström-Sized Pores in Graphene.” Nature Nanotechnology 10, no. 9 (August 3, 2015): 785–90.
Version: Original manuscript
ISSN
1748-3387
1748-3395

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.