Show simple item record

dc.contributor.authorBadrinarayanan, Anjana
dc.contributor.authorLaub, Michael T.
dc.contributor.authorLe, Tung B. K.
dc.date.accessioned2016-03-03T01:35:02Z
dc.date.available2016-03-03T01:35:02Z
dc.date.issued2015-08
dc.date.submitted2015-05
dc.identifier.issn0021-9525
dc.identifier.issn1540-8140
dc.identifier.urihttp://hdl.handle.net/1721.1/101424
dc.description.abstractDouble-strand breaks (DSBs) can lead to the loss of genetic information and cell death. Although DSB repair via homologous recombination has been well characterized, the spatial organization of this process inside cells remains poorly understood, and the mechanisms used for chromosome resegregation after repair are unclear. In this paper, we introduced site-specific DSBs in Caulobacter crescentus and then used time-lapse microscopy to visualize the ensuing chromosome dynamics. Damaged loci rapidly mobilized after a DSB, pairing with their homologous partner to enable repair, before being resegregated to their original cellular locations, independent of DNA replication. Origin-proximal regions were resegregated by the ParABS system with the ParA structure needed for resegregation assembling dynamically in response to the DSB-induced movement of an origin-associated ParB away from one cell pole. Origin-distal regions were resegregated in a ParABS-independent manner and instead likely rely on a physical, spring-like force to segregate repaired loci. Collectively, our results provide a mechanistic basis for the resegregation of chromosomes after a DSB.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01GM082899)en_US
dc.description.sponsorshipGordon and Betty Moore Foundation (Postdoctoral Fellow of the Life Sciences Research Foundation)en_US
dc.description.sponsorshipHuman Frontier Science Program (Strasbourg, France) (Postdoctoral Fellowship)en_US
dc.language.isoen_US
dc.publisherRockefeller University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1083/jcb.201505019en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceRockefeller University Pressen_US
dc.titleRapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteriaen_US
dc.typeArticleen_US
dc.identifier.citationBadrinarayanan, Anjana, Tung B.K. Le, and Michael T. Laub. “Rapid Pairing and Resegregation of Distant Homologous Loci Enables Double-Strand Break Repair in Bacteria.” The Journal of Cell Biology 210, no. 3 (August 3, 2015): 385–400.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorBadrinarayanan, Anjanaen_US
dc.contributor.mitauthorLe, Tung B. K.en_US
dc.contributor.mitauthorLaub, Michael T.en_US
dc.relation.journalThe Journal of Cell Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBadrinarayanan, Anjana; Le, Tung B.K.; Laub, Michael T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4764-8851
dc.identifier.orcidhttps://orcid.org/0000-0002-8288-7607
dc.identifier.orcidhttps://orcid.org/0000-0002-6807-6576
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record