MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Histone H3R2 Symmetric Dimethylation and Histone H3K4 Trimethylation Are Tightly Correlated in Eukaryotic Genomes

Author(s)
Yuan, Chih-Chi; Chen, Chang Feng; Chapman, Brad A.; Ohsumi, Toshiro K.; Glass, Karen C.; Kutateladze, Tatiana G.; Borowsky, Mark L.; Struhl, Kevin; Oettinger, Marjorie A.; Matthews, Adam G. W.; Jin, Yi, M. Eng. Massachusetts Institute of Technology; ... Show more Show less
Thumbnail
DownloadYuan-2012-Histone H3R2 Symmetr.pdf (949.1Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc-nd/3.0/
Metadata
Show full item record
Abstract
The preferential in vitro interaction of the PHD finger of RAG2, a subunit of the V(D)J recombinase, with histone H3 tails simultaneously trimethylated at lysine 4 and symmetrically dimethylated at arginine 2 (H3R2me2sK4me3) predicted the existence of the previously unknown histone modification H3R2me2s. Here, we report the in vivo identification of H3R2me2s . Consistent with the binding specificity of the RAG2 PHD finger, high levels of H3R2me2sK4me3 are found at antigen receptor gene segments ready for rearrangement. However, this double modification is much more general; it is conserved throughout eukaryotic evolution. In mouse, H3R2me2s is tightly correlated with H3K4me3 at active promoters throughout the genome. Mutational analysis in S. cerevisiae reveals that deposition of H3R2me2s requires the same Set1 complex that deposits H3K4me3. Our work suggests that H3R2me2sK4me3, not simply H3K4me3 alone, is the mark of active promoters and that factors that recognize H3K4me3 will have their binding modulated by their preference for H3R2me2s.
Date issued
2012-01
URI
http://hdl.handle.net/1721.1/101708
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Cell Reports
Publisher
Elsevier
Citation
Yuan, Chih-Chi, Adam G.W. Matthews, Yi Jin, Chang Feng Chen, Brad A. Chapman, Toshiro K. Ohsumi, Karen C. Glass, et al. “Histone H3R2 Symmetric Dimethylation and Histone H3K4 Trimethylation Are Tightly Correlated in Eukaryotic Genomes.” Cell Reports 1, no. 2 (February 2012): 83–90.
Version: Final published version
ISSN
22111247

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.