MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages

Author(s)
Li, Jennifer W.; Genshaft, Alex S.; de Riba Borrajo, Jacob; Blainey, Paul C.; Irvine, Darrell J.; Shalek, Alex K.; Manalis, Scott R.; Kimmerling, Robert John; Szeto, Gregory Lee; Kazer, Samuel Weisgurt; Payer, Kristofor Robert; Borrajo, Jacob de Riba; Shalek, Alex; ... Show more Show less
Thumbnail
DownloadKimmerling-2016-Microfluidic Platform.pdf (797.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We introduce a microfluidic platform that enables off-chip single-cell RNA-seq after multi-generational lineage tracking under controlled culture conditions. We use this platform to generate whole-transcriptome profiles of primary, activated murine CD8+ T-cell and lymphocytic leukemia cell line lineages. Here we report that both cell types have greater intra- than inter-lineage transcriptional similarity. For CD8+ T-cells, genes with functional annotation relating to lymphocyte differentiation and function—including Granzyme B—are enriched among the genes that demonstrate greater intra-lineage expression level similarity. Analysis of gene expression covariance with matched measurements of time since division reveals cell type-specific transcriptional signatures that correspond with cell cycle progression. We believe that the ability to directly measure the effects of lineage and cell cycle-dependent transcriptional profiles of single cells will be broadly useful to fields where heterogeneous populations of cells display distinct clonal trajectories, including immunology, cancer, and developmental biology.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/101730
Department
Institute for Medical Engineering and Science; David H. Koch Institute for Integrative Cancer Research at MIT; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Microsystems Technology Laboratories
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Kimmerling, Robert J., Gregory Lee Szeto, Jennifer W. Li, Alex S. Genshaft, Samuel W. Kazer, Kristofor R. Payer, Jacob de Riba Borrajo, et al. “A Microfluidic Platform Enabling Single-Cell RNA-Seq of Multigenerational Lineages.” Nat Comms 7 (January 6, 2016): 10220.
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.