MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly

Author(s)
Yeo, Giselle C.; Tarakanova, Anna; Baldock, Clair; Wise, Steven G.; Weiss, Anthony S.; Buehler, Markus J; ... Show more Show less
Thumbnail
Downloade1501145.full.pdf (11.99Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The assembly of the tropoelastin monomer into elastin is vital for conferring elasticity on blood vessels, skin, and lungs. Tropoelastin has dual needs for flexibility and structure in self-assembly. We explore the structure-dynamics-function interplay, consider the duality of molecular order and disorder, and identify equally significant functional contributions by local and global structures. To study these organizational stratifications, we perturb a key hinge region by expressing an exon that is universally spliced out in human tropoelastins. We find a herniated nanostructure with a displaced C terminus and explain by molecular modeling that flexible helices are replaced with substantial β sheets. We see atypical higher-order cross-linking and inefficient assembly into discontinuous, thick elastic fibers. We explain this dysfunction by correlating local and global structural effects with changes in the molecule’s assembly dynamics. This work has general implications for our understanding of elastomeric proteins, which balance disordered regions with defined structural modules at multiple scales for functional assembly.
Date issued
2016-02
URI
http://hdl.handle.net/1721.1/101734
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Yeo, Giselle C., Anna Tarakanova, Clair Baldock, Steven G. Wise, Markus J. Buehler, and Anthony S. Weiss. "Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly." Science Advances 2.2 (February 2016): e1501145.
Version: Final published version
ISSN
2375-2548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.