Show simple item record

dc.contributor.authorLloyd, Seth
dc.contributor.authorGarnerone, Silvano
dc.contributor.authorZanardi, Paolo
dc.date.accessioned2016-03-18T14:47:34Z
dc.date.available2016-03-18T14:47:34Z
dc.date.issued2016-01
dc.date.submitted2014-09
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/101739
dc.description.abstractExtracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis.en_US
dc.description.sponsorshipUnited States. Army Research Officeen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms10138en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleQuantum algorithms for topological and geometric analysis of dataen_US
dc.typeArticleen_US
dc.identifier.citationLloyd, Seth, Silvano Garnerone, and Paolo Zanardi. “Quantum Algorithms for Topological and Geometric Analysis of Data.” Nat Comms 7 (January 25, 2016): 10138.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorLloyd, Sethen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLloyd, Seth; Garnerone, Silvano; Zanardi, Paoloen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record