Show simple item record

dc.contributor.authorMak, Michael
dc.contributor.authorZaman, Muhammad H.
dc.contributor.authorKim, Taeyoon
dc.contributor.authorKamm, Roger Dale
dc.date.accessioned2016-03-18T16:30:53Z
dc.date.available2016-03-18T16:30:53Z
dc.date.issued2016-01
dc.date.submitted2015-05
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/101742
dc.description.abstractThe actin cytoskeleton—a complex, nonequilibrium network consisting of filaments, actin-crosslinking proteins (ACPs) and motors—confers cell structure and functionality, from migration to morphogenesis. While the core components are recognized, much less is understood about the behaviour of the integrated, disordered and internally active system with interdependent mechano-chemical component properties. Here we use a Brownian dynamics model that incorporates key and realistic features—specifically actin turnover, ACP (un)binding and motor walking—to reveal the nature and underlying regulatory mechanisms of overarching cytoskeletal states. We generate multi-dimensional maps that show the ratio in activity of these microscopic elements determines diverse global stress profiles and the induction of nonequilibrium morphological phase transition from homogeneous to aggregated networks. In particular, actin turnover dynamics plays a prominent role in tuning stress levels and stabilizing homogeneous morphologies in crosslinked, motor-driven networks. The consequence is versatile functionality, from dynamic steady-state prestress to large, pulsed constrictions.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant 5U01CA177799)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms10323en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleInterplay of active processes modulates tension and drives phase transition in self-renewing, motor-driven cytoskeletal networksen_US
dc.typeArticleen_US
dc.identifier.citationMak, Michael, Muhammad H. Zaman, Roger D. Kamm, and Taeyoon Kim. “Interplay of Active Processes Modulates Tension and Drives Phase Transition in Self-Renewing, Motor-Driven Cytoskeletal Networks.” Nat Comms 7 (January 8, 2016): 10323.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorMak, Michaelen_US
dc.contributor.mitauthorKamm, Roger Daleen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMak, Michael; Zaman, Muhammad H.; Kamm, Roger D.; Kim, Taeyoonen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6719-9929
dc.identifier.orcidhttps://orcid.org/0000-0002-7232-304X
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record