Show simple item record

dc.contributor.authorWoodford, William H.
dc.contributor.authorLi, Zheng
dc.contributor.authorBaram, Nir
dc.contributor.authorSmith, Kyle C.
dc.contributor.authorMcKinley, Gareth H.
dc.contributor.authorCarter, W. Craig
dc.contributor.authorChiang, Yet-Ming
dc.contributor.authorFan, Frank Yongzhen
dc.contributor.authorHelal, Ahmed H.
dc.date.accessioned2016-03-24T12:14:25Z
dc.date.available2016-03-24T12:14:25Z
dc.date.issued2014-03
dc.date.submitted2014-02
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/101762
dc.description.abstractA new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences. Joint Center for Energy Storage Researchen_US
dc.description.sponsorshipEni S.p.A. (Firm) (Eni-MIT Energy Fellowship)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nl500740ten_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titlePolysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networksen_US
dc.typeArticleen_US
dc.identifier.citationFan, Frank Y., William H. Woodford, Zheng Li, Nir Baram, Kyle C. Smith, Ahmed Helal, Gareth H. McKinley, W. Craig Carter, and Yet-Ming Chiang. “Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks.” Nano Lett. 14, no. 4 (April 9, 2014): 2210–2218.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorFan, Frank Yongzhenen_US
dc.contributor.mitauthorWoodford, William H.en_US
dc.contributor.mitauthorLi, Zhengen_US
dc.contributor.mitauthorBaram, Niren_US
dc.contributor.mitauthorSmith, Kyle C.en_US
dc.contributor.mitauthorHelal, Ahmed H.en_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.contributor.mitauthorCarter, W. Craigen_US
dc.contributor.mitauthorChiang, Yet-Mingen_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFan, Frank Y.; Woodford, William H.; Li, Zheng; Baram, Nir; Smith, Kyle C.; Helal, Ahmed; McKinley, Gareth H.; Carter, W. Craig; Chiang, Yet-Mingen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7564-7173
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
dc.identifier.orcidhttps://orcid.org/0000-0003-4244-0365
dc.identifier.orcidhttps://orcid.org/0000-0002-0833-7674
dc.identifier.orcidhttps://orcid.org/0000-0002-7104-9739
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record