Show simple item record

dc.contributor.authorJourdan, T.
dc.contributor.authorMarinica, M.-C.
dc.contributor.authorVattre, A.
dc.contributor.authorDing, Hepeng
dc.contributor.authorDemkowicz, Michael J.
dc.date.accessioned2016-03-25T14:06:51Z
dc.date.available2016-03-25T14:06:51Z
dc.date.issued2016-01
dc.date.submitted2015-06
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/101868
dc.description.abstractClean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migration barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Nuclear Energy (Contract DE-NE0000533)en_US
dc.description.sponsorshipUnited States. Dept. of Energy (National Energy Research Scientific Computing Center (U.S.))en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1150862)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms10424en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleNon-random walk diffusion enhances the sink strength of semicoherent interfacesen_US
dc.typeArticleen_US
dc.identifier.citationVattré, A., T. Jourdan, H. Ding, M.-C. Marinica, and M. J. Demkowicz. “Non-Random Walk Diffusion Enhances the Sink Strength of Semicoherent Interfaces.” Nat Comms 7 (January 29, 2016): 10424.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorDing, Hepengen_US
dc.contributor.mitauthorDemkowicz, Michael J.en_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsVattré, A.; Jourdan, T.; Ding, H.; Marinica, M.-C.; Demkowicz, M. J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6832-1068
dc.identifier.orcidhttps://orcid.org/0000-0003-3949-0441
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record