Interface Stability in Solid-State Batteries
Author(s)
Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ceder, Gerbrand; Richards, William Davidson
DownloadCeder_Interface stability.pdf (896.0Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Development of high conductivity solid-state electrolytes for lithium ion batteries has proceeded rapidly in recent years, but incorporating these new materials into high-performing batteries has proven difficult. Interfacial resistance is now the limiting factor in many systems, but the exact mechanisms of this resistance have not been fully explained - in part because experimental evaluation of the interface can be very difficult. In this work, we develop a computational methodology to examine the thermodynamics of formation of resistive interfacial phases. The predicted interfacial phase formation is well correlated with experimental interfacial observations and battery performance. We calculate that thiophosphate electrolytes have especially high reactivity with high voltage cathodes and a narrow electrochemical stability window. We also find that a number of known electrolytes are not inherently stable but react in situ with the electrode to form passivating but ionically conducting barrier layers. As a reference for experimentalists, we tabulate the stability and expected decomposition products for a wide range of electrolyte, coating, and electrode materials including a number of high-performing combinations that have not yet been attempted experimentally.
Date issued
2015-12Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Chemistry of Materials
Publisher
American Chemical Society (ACS)
Citation
Richards, William D., Lincoln J. Miara, Yan Wang, Jae Chul Kim, and Gerbrand Ceder. “Interface Stability in Solid-State Batteries.” Chem. Mater. 28, no. 1 (January 12, 2016): 266–273. © 2015 American Chemical Society
Version: Final published version
ISSN
0897-4756
1520-5002