Show simple item record

dc.contributor.authorLee, Choongbum
dc.contributor.authorOum, Sang-il
dc.date.accessioned2016-03-28T18:32:08Z
dc.date.available2016-03-28T18:32:08Z
dc.date.issued2015-10
dc.date.submitted2015-08
dc.identifier.issn0895-4801
dc.identifier.issn1095-7146
dc.identifier.urihttp://hdl.handle.net/1721.1/101894
dc.description.abstractWe prove that for all positive integers t, every n-vertex graph with no K[subscript t]-subdivision has at most 2[superscript 50t]n cliques. We also prove that asymptotically, such graphs contain at most 2[superscript (5+o(1))t]n cliques, where o(1) tends to zero as t tends to infinity. This strongly answers a question of Wood that asks whether the number of cliques in n-vertex graphs with no K[subscript t]-minor is at most 2[superscript ct]n for some constant c.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1362326)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/140979988en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleNumber of Cliques in Graphs with a Forbidden Subdivisionen_US
dc.typeArticleen_US
dc.identifier.citationLee, Choongbum, and Sang-il Oum. “Number of Cliques in Graphs with a Forbidden Subdivision.” SIAM Journal on Discrete Mathematics 29, no. 4 (January 2015): 1999–2005. © 2015 Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorLee, Choongbumen_US
dc.relation.journalSIAM Journal on Discrete Mathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLee, Choongbum; Oum, Sang-ilen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5798-3509
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record