MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Time-Reversal Symmetric U(1) Quantum Spin Liquids

Author(s)
Wang, Chong; Todadri, Senthil
Thumbnail
DownloadPhysRevX.6.011034.pdf (693.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0
Metadata
Show full item record
Abstract
We study possible quantum U(1) spin liquids in three dimensions with time-reversal symmetry. We find a total of seven families of such U(1) spin liquids, distinguished by the properties of their emergent electric or magnetic charges. We show how these spin liquids are related to each other. Two of these classes admit nontrivial protected surface states which we describe. We show how to access all of the seven spin liquids through slave particle (parton) constructions. We also provide intuitive loop gas descriptions of their ground-state wave functions. One of these phases is the “topological Mott insulator,” conventionally described as a topological insulator of an emergent fermionic “spinon.” We show that this phase admits a remarkable dual description as a topological insulator of emergent fermionic magnetic monopoles. This results in a new (possibly natural) surface phase for the topological Mott insulator and a new slave particle construction. We describe some of the continuous quantum phase transitions between the different U(1) spin liquids. Each of these seven families of states admits a finer distinction in terms of their surface properties, which we determine by combining these spin liquids with symmetry-protected topological phases. We discuss lessons for materials such as pyrochlore quantum spin ices which may harbor a U(1) spin liquid. We suggest the topological Mott insulator as a possible ground state in some range of parameters for the quantum spin ice Hamiltonian.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/101902
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review X
Publisher
American Physical Society
Citation
Wang, Chong, and T. Senthil. “Time-Reversal Symmetric U(1) Quantum Spin Liquids.” Physical Review X 6, no. 1 (March 28, 2016).
Version: Final published version
ISSN
2160-3308

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.