Packing morphology of wavy nanofiber arrays
Author(s)
Stein, Itai Y.; Wardle, Brian L.
DownloadWardle_Packing morphology.pdf (2.490Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Existing theories for quantifying the morphology of nanofibers (NFs) in aligned arrays either neglect or assume a simple functional form for the curvature of the NFs, commonly known as the NF waviness. However, since such assumptions cannot adequately describe the waviness of real NFs, errors that can exceed 10% in the predicted inter-NF separation can result. Here we use a theoretical framework capable of simulating >10[superscript 5] NFs with stochastic three-dimensional morphologies to quantify NF waviness on an easily accessible measure of the morphology, the inter-NF spacing, for a range of NF volume fractions. The presented scaling of inter-NF spacing with waviness is then used to study the morphology evolution of aligned carbon nanotube (A-CNT) arrays during packing, showing that the effective two-dimensional coordination number of the A-CNTs increases much faster than previously reported during close packing, and that hexagonal close packing can successfully describe the packing morphology of the A-CNTs at volume fractions greater than 40 vol%.
Date issued
2015-11Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Physical Chemistry Chemical Physics
Publisher
Royal Society of Chemistry
Citation
Stein, Itai Y., and Brian L. Wardle. “Packing Morphology of Wavy Nanofiber Arrays.” Phys. Chem. Chem. Phys. 18, no. 2 (2016): 694–699. © 2015 Royal Society of Chemistry
Version: Final published version
ISSN
1463-9076
1463-9084