Show simple item record

dc.contributor.authorStein, Itai Y.
dc.contributor.authorWardle, Brian L.
dc.contributor.authorLewis, Diana Jean
dc.date.accessioned2016-03-30T14:41:38Z
dc.date.available2016-03-30T14:41:38Z
dc.date.issued2015-11
dc.date.submitted2015-09
dc.identifier.issn2040-3364
dc.identifier.issn2040-3372
dc.identifier.urihttp://hdl.handle.net/1721.1/101916
dc.description.abstractThe landmark theoretical properties of low dimensional materials have driven more than a decade of research on carbon nanotubes (CNTs) and related nanostructures. While studies on isolated CNTs report behavior that aligns closely with theoretical predictions, studies on cm-scale aligned CNT arrays (>10[superscript 10] CNTs) oftentimes report properties that are orders of magnitude below those predicted by theory. Using simulated arrays comprised of up to 105 CNTs with realistic stochastic morphologies, we show that the CNT waviness, quantified via the waviness ratio (w), is responsible for more than three orders of magnitude reduction in the effective CNT stiffness. Also, by including information on the volume fraction scaling of the CNT waviness, the simulation shows that the observed non-linear enhancement of the array stiffness as a function of the CNT close packing originates from the shear and torsion deformation mechanisms that are governed by the low shear modulus (∼1 GPa) of the CNTs.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Nano-engineered Composite aerospace STructures (NECST) Consortiumen_US
dc.description.sponsorshipUnited States. Army Research Office (Contract W911NF-07-D-0004)en_US
dc.description.sponsorshipUnited States. Army Research Office (Contract W911NF-13-D-0001)en_US
dc.description.sponsorshipUnited States. Dept. of Defense. National Defense Science & Engineering Graduate Fellowship Programen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c5nr06436hen_US
dc.rightsCreative Commons Attribution 3.0 Unported licenceen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleAligned carbon nanotube array stiffness from stochastic three-dimensional morphologyen_US
dc.typeArticleen_US
dc.identifier.citationStein, Itai Y., Diana J. Lewis, and Brian L. Wardle. “Aligned Carbon Nanotube Array Stiffness from Stochastic Three-Dimensional Morphology.” Nanoscale 7, no. 46 (2015): 19426–19431. © 2015 Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorStein, Itai Y.en_US
dc.contributor.mitauthorLewis, Diana Jeanen_US
dc.contributor.mitauthorWardle, Brian L.en_US
dc.relation.journalNanoscaleen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsStein, Itai Y.; Lewis, Diana J.; Wardle, Brian L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3229-7315
dc.identifier.orcidhttps://orcid.org/0000-0003-3530-5819
dc.identifier.orcidhttps://orcid.org/0000-0002-1268-4492
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record