MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Treating produced water from hydraulic fracturing: Composition effects on scale formation and desalination system selection

Author(s)
Thiel, Gregory Parker; Lienhard, John H
Thumbnail
DownloadThiel_Desalination_2014.pdf (1.462Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Produced water from unconventional gas and oil extraction may be hypersaline with uncommon combinations of dissolved ions. The aim of this analysis is to aid in the selection of produced water treatment technology by identifying the temperature, pH, and recovery ratio under which mineral solid formation from these produced waters is likely to occur. Eight samples of produced water from the Permian Basin and the Marcellus shale are discussed, with an average TDS of about 177 g/L but significant variability. Crystallization potential is quantified by the saturation index, and activity coefficients are calculated using the Pitzer model. The method is applied to estimate solid formation in the treatment of two design case samples: a 183 g/L sample representing the Permian Basin water and a 145 g/L sample representing the Marcellus. Without pretreatment, the most likely solids to form, defined by highest saturation index, are: CaCO[subscript 3], FeCO[subscript 3], MgCO[subscript 3], MnCO[subscript 3], SrCO[subscript 3], BaSO[subscript 4], CaSO[subscript 4], MgSO[subscript 4] and SrSO[subscript 4]. Some options for mitigating the formation of these scales are discussed. With appropriate pretreatment, it is estimated that recovery ratios of as high as 40–50% are achievable before NaCl, a major constituent, is likely to limit further concentration without significant crystallization.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/101941
Department
Massachusetts Institute of Technology. Abdul Latif Jameel World Water & Food Security Lab; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Desalination
Publisher
Elsevier
Citation
Thiel, Gregory P., and John H. Lienhard. “Treating Produced Water from Hydraulic Fracturing: Composition Effects on Scale Formation and Desalination System Selection.” Desalination 346 (August 2014): 54–69.
Version: Author's final manuscript
ISSN
00119164

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.