MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy consumption in desalinating produced water from shale oil and gas extraction

Author(s)
Tow, Emily W.; Chung, Hyung Won; Thiel, Gregory Parker; Banchik, Leonardo David; Lienhard, John H
Thumbnail
DownloadThiel_Desalination_2015.pdf (1.425Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how these properties drive differences in system thermodynamics at salinities significantly above the oceanic range. Models of mechanical vapor compression, multi-effect distillation, forward osmosis, humidification–dehumidification, membrane distillation, and a hypothetical high pressure reverse osmosis system show that for a fixed brine salinity, evaporative system energetics tend to be less sensitive to changes in feed salinity. Consequently, second law efficiencies of evaporative systems tend to be higher when treating typical produced waters to near-saturation than when treating seawater. In addition, if realized for high-salinity produced waters, reverse osmosis has the potential to achieve very high efficiencies. The results suggest a different energetic paradigm in comparing membrane and evaporative systems for high salinity wastewater treatment than has been commonly accepted for lower salinity water.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/101978
Department
Massachusetts Institute of Technology. Abdul Latif Jameel World Water & Food Security Lab; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Desalination
Publisher
Elsevier
Citation
Thiel, Gregory P., Emily W. Tow, Leonardo D. Banchik, Hyung Won Chung, and John H. Lienhard. “Energy Consumption in Desalinating Produced Water from Shale Oil and Gas Extraction.” Desalination 366 (June 2015): 94–112.
Version: Author's final manuscript
ISSN
00119164

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.