Show simple item record

dc.contributor.authorLu, Dawei
dc.contributor.authorBiamonte, Jacob D.
dc.contributor.authorLi, Jun
dc.contributor.authorLi, Hang
dc.contributor.authorJohnson, Tomi H.
dc.contributor.authorBergholm, Ville
dc.contributor.authorFaccin, Mauro
dc.contributor.authorLaflamme, Raymond
dc.contributor.authorBaugh, Jonathan
dc.contributor.authorLloyd, Seth
dc.contributor.authorZimboras, Zoltan
dc.date.accessioned2016-04-04T15:19:35Z
dc.date.available2016-04-04T15:19:35Z
dc.date.issued2016-04
dc.date.submitted2016-01
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttp://hdl.handle.net/1721.1/102093
dc.description.abstractGiven its importance to many other areas of physics, from condensed-matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time asymmetry. Moreover, we show that time asymmetry in circuits can be controlled using local gates only and can simulate time asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport and imply that time asymmetry represents an omnipresent yet poorly understood effect in quantum information science.en_US
dc.description.sponsorshipUnited States. Army Research Officeen_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agencyen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.description.sponsorshipEni S.p.A. (Firm) (Eni-MIT Energy Fellowship)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.93.042302en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleChiral quantum walksen_US
dc.typeArticleen_US
dc.identifier.citationLu, Dawei, Jacob D. Biamonte, Jun Li, Hang Li, Tomi H. Johnson, Ville Bergholm, Mauro Faccin, et al. “Chiral Quantum Walks.” Physical Review A 93, no. 4 (April 1, 2016). © 2016 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorLloyd, Sethen_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2016-04-01T22:00:09Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsLu, Dawei; Biamonte, Jacob D.; Li, Jun; Li, Hang; Johnson, Tomi H.; Bergholm, Ville; Faccin, Mauro; Zimborás, Zoltán; Laflamme, Raymond; Baugh, Jonathan; Lloyd, Sethen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record