MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A respiratory chain controlled signal transduction cascade in the mitochondrial intermembrane space mediates hydrogen peroxide signaling

Author(s)
Patterson, Heide Christine; Gerbeth, Carolin; Thiru, Prathapan; Vogtle, Nora F.; Knoll, Marko; Shahsafaei, Aliakbar; Samocha, Kaitlin E.; Huang, Cher X.; Song, Rui; Chen, Cynthia; Kao, Jennifer; Shi, Jiahai; Salmon, Wendy; Shaul, Yoav D.; Stokes, Matthew P.; Silva, Jeffrey C.; Bell, George W.; MacArthur, Daniel G.; Ruland, Jurgen; Meisinger, Chris; Harden, Mark Michael,Jr.; Lodish, Harvey F; ... Show more Show less
Thumbnail
DownloadPatterson-2015-A respiratory chain.pdf (10.25Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H[subscript 2]O[subscript 2]) govern cellular homeostasis by inducing signaling. H[subscript 2]O[subscript 2] modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H[subscript 2]O[subscript 2] signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H[subscript 2]O[subscript 2] signaling colocalize as H[subscript 2]O[subscript 2] induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H[subscript 2]O[subscript 2] as the respiratory chain, Lyn, and Syk were similarly required for H[subscript 2]O[subscript 2] signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H[subscript 2]O[subscript 2] signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/102125
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Biology
Journal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Patterson, Heide Christine, Carolin Gerbeth, Prathapan Thiru, Nora F. Vogtle, Marko Knoll, Aliakbar Shahsafaei, Kaitlin E. Samocha, et al. “A Respiratory Chain Controlled Signal Transduction Cascade in the Mitochondrial Intermembrane Space Mediates Hydrogen Peroxide Signaling.” Proc Natl Acad Sci USA 112, no. 42 (October 5, 2015): E5679–E5688.
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.