Show simple item record

dc.contributor.authorLamus, Camilo
dc.contributor.authorTemereanca, Simona
dc.contributor.authorBrown, Emery N.
dc.contributor.authorHamalainen, Matti S.
dc.contributor.authorPurdon, Patrick Lee
dc.date.accessioned2016-04-15T15:38:44Z
dc.date.available2016-04-15T15:38:44Z
dc.date.issued2011-11
dc.date.submitted2011-11
dc.identifier.issn10538119
dc.identifier.urihttp://hdl.handle.net/1721.1/102244
dc.description.abstractMEG/EEG are non-invasive imaging techniques that record brain activity with high temporal resolution. However, estimation of brain source currents from surface recordings requires solving an ill-conditioned inverse problem. Converging lines of evidence in neuroscience, from neuronal network models to resting-state imaging and neurophysiology, suggest that cortical activation is a distributed spatiotemporal dynamic process, supported by both local and long-distance neuroanatomic connections. Because spatiotemporal dynamics of this kind are central to brain physiology, inverse solutions could be improved by incorporating models of these dynamics. In this article, we present a model for cortical activity based on nearest-neighbor autoregression that incorporates local spatiotemporal interactions between distributed sources in a manner consistent with neurophysiology and neuroanatomy. We develop a dynamic Maximum a Posteriori Expectation-Maximization (dMAP-EM) source localization algorithm for estimation of cortical sources and model parameters based on the Kalman Filter, the Fixed Interval Smoother, and the EM algorithms. We apply the dMAP-EM algorithm to simulated experiments as well as to human experimental data. Furthermore, we derive expressions to relate our dynamic estimation formulas to those of standard static models, and show how dynamic methods optimally assimilate past and future data. Our results establish the feasibility of spatiotemporal dynamic estimation in large-scale distributed source spaces with several thousand source locations and hundreds of sensors, with resulting inverse solutions that provide substantial performance improvements over static methods.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.neuroimage.2011.11.020en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleA spatiotemporal dynamic distributed solution to the MEG inverse problemen_US
dc.typeArticleen_US
dc.identifier.citationLamus, Camilo, Matti S. Hamalainen, Simona Temereanca, Emery N. Brown, and Patrick L. Purdon. “A Spatiotemporal Dynamic Distributed Solution to the MEG Inverse Problem.” NeuroImage 63, no. 2 (November 2012): 894–909.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorLamus, Camiloen_US
dc.contributor.mitauthorHamalainen, Matti S.en_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.contributor.mitauthorTemereanca, Simonaen_US
dc.contributor.mitauthorPurdon, Patrick Leeen_US
dc.relation.journalNeuroImageen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLamus, Camilo; Hamalainen, Matti S.; Temereanca, Simona; Brown, Emery N.; Purdon, Patrick L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
dc.identifier.orcidhttps://orcid.org/0000-0001-6841-112X
dc.identifier.orcidhttps://orcid.org/0000-0002-6777-7979
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record