Show simple item record

dc.contributor.authorShafi, Mouhsin M.
dc.contributor.authorChing, ShiNung
dc.contributor.authorChemali, Jessica J.
dc.contributor.authorCash, Sydney S.
dc.contributor.authorBrown, Emery N.
dc.contributor.authorWestover, M. Brandon
dc.contributor.authorPurdon, Patrick Lee
dc.date.accessioned2016-04-15T19:44:29Z
dc.date.available2016-04-15T19:44:29Z
dc.date.issued2013-07
dc.date.submitted2013-06
dc.identifier.issn01650270
dc.identifier.urihttp://hdl.handle.net/1721.1/102246
dc.description.abstractObjective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Director's Pioneer Award DP1OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-MH071847)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (New Innovator Award DP2-OD006454)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (K-Award K25-NS057580)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jneumeth.2013.07.003en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleReal-time segmentation of burst suppression patterns in critical care EEG monitoringen_US
dc.typeArticleen_US
dc.identifier.citationBrandon Westover, M., Mouhsin M. Shafi, ShiNung Ching, Jessica J. Chemali, Patrick L. Purdon, Sydney S. Cash, and Emery N. Brown. “Real-Time Segmentation of Burst Suppression Patterns in Critical Care EEG Monitoring.” Journal of Neuroscience Methods 219, no. 1 (September 2013): 131–141.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorChing, ShiNungen_US
dc.contributor.mitauthorChemali, Jessica J.en_US
dc.contributor.mitauthorPurdon, Patrick Leeen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.relation.journalJournal of Neuroscience Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBrandon Westover, M.; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record