Show simple item record

dc.contributor.authorChen, Desai
dc.contributor.authorLevin, David I. W.
dc.contributor.authorSueda, Shinjiro
dc.contributor.authorMatusik, Wojciech
dc.date.accessioned2016-04-20T19:18:15Z
dc.date.available2016-04-20T19:18:15Z
dc.date.issued2015-08
dc.identifier.issn07300301
dc.identifier.urihttp://hdl.handle.net/1721.1/102282
dc.description.abstractCrafting the behavior of a deformable object is difficult---whether it is a biomechanically accurate character model or a new multimaterial 3D printable design. Getting it right requires constant iteration, performed either manually or driven by an automated system. Unfortunately, Previous algorithms for accelerating three-dimensional finite element analysis of elastic objects suffer from expensive precomputation stages that rely on a priori knowledge of the object's geometry and material composition. In this paper we introduce Data-Driven Finite Elements as a solution to this problem. Given a material palette, our method constructs a metamaterial library which is reusable for subsequent simulations, regardless of object geometry and/or material composition. At runtime, we perform fast coarsening of a simulation mesh using a simple table lookup to select the appropriate metamaterial model for the coarsened elements. When the object's material distribution or geometry changes, we do not need to update the metamaterial library---we simply need to update the metamaterial assignments to the coarsened elements. An important advantage of our approach is that it is applicable to non-linear material models. This is important for designing objects that undergo finite deformation (such as those produced by multimaterial 3D printing). Our method yields speed gains of up to two orders of magnitude while maintaining good accuracy. We demonstrate the effectiveness of the method on both virtual and 3D printed examples in order to show its utility as a tool for deformable object design.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-1138967)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (N66001-12-1-4242)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2766889en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Matusik via Phoebe Ayersen_US
dc.titleData-driven finite elements for geometry and material designen_US
dc.typeArticleen_US
dc.identifier.citationDesai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven finite elements for geometry and material design. ACM Trans. Graph. 34, 4, Article 74 (July 2015), 10 pages.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverMatusik, Wojciechen_US
dc.contributor.mitauthorChen, Desaien_US
dc.contributor.mitauthorLevin, David I. W.en_US
dc.contributor.mitauthorSueda, Shinjiroen_US
dc.contributor.mitauthorMatusik, Wojciechen_US
dc.relation.journalACM Transactions on Graphicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsChen, Desai; Levin, David I. W.; Sueda, Shinjiro; Matusik, Wojciechen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0212-5643
dc.identifier.orcidhttps://orcid.org/0000-0003-2336-6235
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record