Show simple item record

dc.contributor.authorRodrigues, J. L.
dc.contributor.authorAraujo, R. G.
dc.contributor.authorPrather, Kristala L. Jones
dc.contributor.authorKluskens, L. D.
dc.contributor.authorRodrigues, L. R.
dc.date.accessioned2016-04-28T13:52:25Z
dc.date.available2016-04-28T13:52:25Z
dc.date.issued2015-01
dc.date.submitted2014-12
dc.identifier.issn01410229
dc.identifier.urihttp://hdl.handle.net/1721.1/102314
dc.description.abstractCaffeic acid is a plant secondary metabolite and its biological synthesis has attracted increased attention due to its beneficial effects on human health. In this study, Escherichia coli was engineered for the production of caffeic acid using tyrosine as the initial precursor of the pathway. The pathway design included tyrosine ammonia lyase (TAL) from Rhodotorula glutinis to convert tyrosine to p-coumaric acid and 4-coumarate 3-hydroxylase (C3H) from Saccharothrix espanaensis or cytochrome P450 CYP199A2 from Rhodopseudomonas palustris to convert p-coumaric acid to caffeic acid. The genes were codon-optimized and different combinations of plasmids were used to improve the titer of caffeic acid. TAL was able to efficiently convert 3 mM of tyrosine to p-coumaric acid with the highest production obtained being 2.62 mM (472 mg/L). CYP199A2 exhibited higher catalytic activity towards p-coumaric acid than C3H. The highest caffeic acid production obtained using TAL and CYP199A2 and TAL and C3H was 1.56 mM (280 mg/L) and 1 mM (180 mg/L), respectively. This is the first study that shows caffeic acid production using CYP199A2 and tyrosine as the initial precursor. This study suggests the possibility of further producing more complex plant secondary metabolites like flavonoids and curcuminoids.en_US
dc.description.sponsorshipFonds Europeen de Developpement Economique et Regional. COMPETE Programen_US
dc.description.sponsorshipFonds Europeen de Developpement Economique et Regional. ON2 Programen_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (Project FCOMP-01-0124-FEDER-027462)en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (PEst-OE/EQB/LA0023/2013)en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (NORTE-07-0124-FEDER-000028)en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (NORTE-07-0124-FEDER-000027)en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (Grant SFRH/BD/51187/2010)en_US
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (SYNBIOBACTHER Project PTDC/EBB-BIO/102863/2008)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.enzmictec.2015.01.001en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Prather via Erja Kajosaloen_US
dc.titleHeterologous production of caffeic acid from tyrosine in Escherichia colien_US
dc.typeArticleen_US
dc.identifier.citationRodrigues, J.L., R.G. Araujo, K.L.J. Prather, L.D. Kluskens, and L.R. Rodrigues. “Heterologous Production of Caffeic Acid from Tyrosine in Escherichia Coli.” Enzyme and Microbial Technology 71 (April 2015): 36–44.en_US
dc.contributor.departmentMIT Synthetic Biology Engineering Research Centeren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.approverPrather, Kristala L. Jonesen_US
dc.contributor.mitauthorPrather, Kristala L. Jonesen_US
dc.relation.journalEnzyme and Microbial Technologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRodrigues, J.L.; Araujo, R.G.; Prather, K.L.J.; Kluskens, L.D.; Rodrigues, L.R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0437-3157
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record