MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed Multi-Robot Formation Control among Obstacles: A Geometric and Optimization Approach with Consensus

Author(s)
Alonso-Mora, Javier; Montijano, Eduardo; Schwager, Mac; Rus, Daniela L.
Thumbnail
Download16-alonsomora-icra-distribformation.pdf (536.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents a distributed method for navigating a team of robots in formation in 2D and 3D environments with static and dynamic obstacles. The robots are assumed to have a reduced communication and visibility radius and share information with their neighbors. Via distributed consensus the robots compute (a) the convex hull of the robot positions and (b) the largest convex region within free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation within this convex neighborhood of the robots. Reconfiguration is allowed, when required, by considering a set of target formations. The robots navigate towards the target collision-free formation with individual local planners that account for their dynamics. The approach is efficient and scalable with the number of robots and performs well in simulations with up to sixteen quadrotors.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/102330
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Alonso-Mora, Javier, Eduardo Montijano, Mac Schwager, and Daniela Rus. "Distributed Multi-Robot Formation Control among Obstacles: A Geometric and Optimization Approach with Consensus." 2016 IEEE International Conference on Robotics and Automation (ICRA) (May 2016).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.