MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultra High Temperature Rare Earth Metal Extraction by Electrolysis

Author(s)
Lambotte, Guillaume; Allanore, Antoine; Nakanishi, Bradley Rex
Thumbnail
DownloadTMS2015Manuscript_Nakanishi_Draft1_AAZEDits.pdf (665.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Current industrial methods used for rare earth element (REE) extraction involve: 1) ore enrichment, 2) separation of rare earth oxides (REOs), 3) chlorination or hydrofluorination, and 4) individual electrowinning of REEs from a molten halide electrolyte. The complexity of REE extraction is inherited from their electronic configuration. Recently, molten oxide electrolysis (MOE) has been used to produce reactive metals directly from their oxides, e.g. titanium. As a single-step alternative to processes 3) and 4), or laboratory has investigated rare earth extraction by MOE. A key challenge is to find a molten electrolyte more stable than REOs. One possibility is to use binaries of REOs directly as a solvent. We have, therefore, developed two experimental approaches for studying molten REOs at temperatures exceeding 2200°C. The present work reports the most recent experimental results obtained with La[subscript 2]0[subscript 3]-Y[subscript 2]0[subscript 3]. Those promising results demonstrate potential for operating with molten REOs and refine the underlying materials challenge for electrodes to enable metal recovery.
Date issued
2015-02
URI
http://hdl.handle.net/1721.1/102334
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Rare Metal Technology 2015
Publisher
Wiley Blackwell
Citation
Nakanishi, Bradley R., Guillaume Lambotte, and Antoine Allanore. “Ultra High Temperature Rare Earth Metal Extraction by Electrolysis.” Rare Metal Technology 2015 (February 20, 2015): 177–183.
Version: Author's final manuscript
ISBN
9781119078302
9781119093244

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.