Show simple item record

dc.contributor.authorChing, ShiNung
dc.contributor.authorPurdon, Patrick Lee
dc.contributor.authorVijayan, Sujith
dc.contributor.authorKopell, Nancy J.
dc.contributor.authorBrown, Emery N.
dc.date.accessioned2016-04-29T16:34:44Z
dc.date.available2016-04-29T16:34:44Z
dc.date.issued2012-02
dc.date.submitted2011-11
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/102335
dc.description.abstractBurst suppression is an electroencepholagram (EEG) pattern in which high-voltage activity alternates with isoelectric quiescence. It is characteristic of an inactivated brain and is commonly observed at deep levels of general anesthesia, hypothermia, and in pathological conditions such as coma and early infantile encephalopathy. We propose a unifying mechanism for burst suppression that accounts for all of these conditions. By constructing a biophysical computational model, we show how the prevailing features of burst suppression may arise through the interaction between neuronal dynamics and brain metabolism. In each condition, the model suggests that a decrease in cerebral metabolic rate, coupled with the stabilizing properties of ATP-gated potassium channels, leads to the characteristic epochs of suppression. Consequently, the model makes a number of specific predictions of experimental and clinical relevance.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant K25-NS057580)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP2-OD006454)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1042134)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0717670)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1121461109en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleA neurophysiological-metabolic model for burst suppressionen_US
dc.typeArticleen_US
dc.identifier.citationChing, S., P. L. Purdon, S. Vijayan, N. J. Kopell, and E. N. Brown. “A Neurophysiological-Metabolic Model for Burst Suppression.” Proceedings of the National Academy of Sciences 109, no. 8 (February 7, 2012): 3095–3100.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorChing, ShiNungen_US
dc.contributor.mitauthorPurdon, Patrick Leeen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChing, S.; Purdon, P. L.; Vijayan, S.; Kopell, N. J.; Brown, E. N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record