Show simple item record

dc.contributor.authorBa, Demba
dc.contributor.authorTemereanca, Simona
dc.contributor.authorBrown, Emery N.
dc.date.accessioned2016-05-02T15:46:57Z
dc.date.available2016-05-02T15:46:57Z
dc.date.issued2014-02
dc.date.submitted2013-08
dc.identifier.issn1662-5188
dc.identifier.urihttp://hdl.handle.net/1721.1/102351
dc.description.abstractUnderstanding how ensembles of neurons represent and transmit information in the patterns of their joint spiking activity is a fundamental question in computational neuroscience. At present, analyses of spiking activity from neuronal ensembles are limited because multivariate point process (MPP) models cannot represent simultaneous occurrences of spike events at an arbitrarily small time resolution. Solo recently reported a simultaneous-event multivariate point process (SEMPP) model to correct this key limitation. In this paper, we show how Solo's discrete-time formulation of the SEMPP model can be efficiently fit to ensemble neural spiking activity using a multinomial generalized linear model (mGLM). Unlike existing approximate procedures for fitting the discrete-time SEMPP model, the mGLM is an exact algorithm. The MPP time-rescaling theorem can be used to assess model goodness-of-fit. We also derive a new marked point-process (MkPP) representation of the SEMPP model that leads to new thinning and time-rescaling algorithms for simulating an SEMPP stochastic process. These algorithms are much simpler than multivariate extensions of algorithms for simulating a univariate point process, and could not be arrived at without the MkPP representation. We illustrate the versatility of the SEMPP model by analyzing neural spiking activity from pairs of simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections, and by simulating SEMPP data. In the data analysis example, the SEMPP model demonstrates that whisker motion significantly modulates simultaneous spiking activity at the 1 ms time scale and that the stimulus effect is more than one order of magnitude greater for simultaneous activity compared with non-simultaneous activity. Together, the mGLM, the MPP time-rescaling theorem and the MkPP representation of the SEMPP model offer a theoretically sound, practical tool for measuring joint spiking propensity in a neuronal ensemble.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 0836720)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DA-015644)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP10D003646)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fncom.2014.00006en_US
dc.rightsCreative Commons Attribution 3.0 Unported licenceen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceFrontiersen_US
dc.titleAlgorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process modelsen_US
dc.typeArticleen_US
dc.identifier.citationBa, Demba, Simona Temereanca, and Emery N. Brown. “Algorithms for the Analysis of Ensemble Neural Spiking Activity Using Simultaneous-Event Multivariate Point-Process Models.” Frontiers in Computational Neuroscience 8 (2014).en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorBa, Dembaen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.relation.journalFrontiers in Computational Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBa, Demba; Temereanca, Simona; Brown, Emery N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record