MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate

Author(s)
Rodrigues, Joana L.; Kluskens, Leon D.; Rodrigues, Ligia R.; Araujo, Rafael G.; Prather, Kristala L. Jones
Thumbnail
Downloadmanuscript_revised_biotecj.pdf (1.419Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin synthase (CURS1) were used to produce curcuminoids and 70 mg/L of curcumin was obtained from ferulic acid. Bisdemethoxycurcumin and demethoxycurcumin were also produced, but in lower concentrations, by feeding p-coumaric acid or a mixture of p-coumaric acid and ferulic acid, respectively. Additionally, curcuminoids were produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase from Rhodotorula glutinis and 4-coumarate 3-hydroxylase from Saccharothrix espanaensis were used. Caffeoyl-CoA 3-O-methyltransferase from Medicago sativa was used to convert caffeoyl-CoA to feruloyl-CoA. Using caffeic acid, p-coumaric acid or tyrosine as a substrate, 3.9, 0.3, and 0.2 mg/L of curcumin were produced, respectively. This is the first time DCS and CURS1 were used in vivo to produce curcuminoids and that curcumin was produced by feeding tyrosine. We have shown that curcumin can be produced using a pathway involvoing caffeic acid. This alternative pathway represents a step forward in the heterologous production of curcumin using E. coli.
Date issued
2015-01
URI
http://hdl.handle.net/1721.1/102377
Department
MIT Synthetic Biology Engineering Research Center; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Biotechnology Journal
Publisher
Wiley Blackwell
Citation
Rodrigues, Joana L., Rafael G. Araujo, Kristala L. J. Prather, Leon D. Kluskens, and Ligia R. Rodrigues. “Production of Curcuminoids from Tyrosine by a Metabolically Engineered Escherichia Coli Using Caffeic Acid as an Intermediate.” Biotechnology Journal 10, no. 4 (February 18, 2015): 599–609.
Version: Author's final manuscript
ISSN
18606768
1860-7314

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.