dc.contributor.author | Chen, Po-Yen | |
dc.contributor.author | Hyder, Md Nasim | |
dc.contributor.author | Qi, Jifa | |
dc.contributor.author | Dorval Courchesne, Noemie-Manuelle | |
dc.contributor.author | Belcher, Angela M | |
dc.contributor.author | Hammond, Paula T | |
dc.date.accessioned | 2016-05-09T17:31:15Z | |
dc.date.available | 2016-05-09T17:31:15Z | |
dc.date.issued | 2015-04 | |
dc.date.submitted | 2015-02 | |
dc.identifier.issn | 2046-2069 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/102443 | |
dc.description.abstract | Conductive polymer hydrogels, which synergize the advantageous features of hydrogels and conductive materials, have been utilized in many electrochemical energy storage applications. Here, we introduce phytic acid as (1) a dispersing agent for pristine multi-walled carbon nanotubes (MWNTs) in aqueous solution containing aniline and as (2) a gelator to form polyaniline (PANI)-based hydrogels after polymerization. The PANI-based hydrogels exhibit nanowire-based mesoporous networks with high surface area and electrical conductivity. The nanostructured core (MWNT)–shell (PANI) hydrogels show an improvement on the electrical conductivity from 0.21 to 1.54 S cm[superscript −1] as the loading of MWNTs increases from 0 to 5.0 wt%. The conducting nanowire-based networks with MWNT loadings of 3.0 wt% in the hydrogel provide efficient electron transport pathways that exhibit a maximal specific capacity of 609 F g[superscript −1]. The scalable and facile synthesis demonstrates excellent electrochemical performance, rendering it attractive for sensing, energy conversion, and energy storage applications. | en_US |
dc.description.sponsorship | Eni S.p.A. (Firm) (Eni-MIT Energy Fellowship) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.). Center for Chemical Innovation (CHE-1305124) | en_US |
dc.description.sponsorship | United States. Army Research Office. Institute for Collaborative Biotechnologies | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada (Postgraduate Scholarship) | en_US |
dc.language.iso | en_US | |
dc.publisher | Royal Society of Chemistry | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1039/c5ra02944a | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Prof. Hammond via Erja Kajosalo | en_US |
dc.title | Carbon nanotube–polyaniline core–shell nanostructured hydrogel for electrochemical energy storage | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Chen, Po-Yen, Noémie-Manuelle Dorval Courchesne, Md Nasim Hyder, Jifa Qi, Angela M. Belcher, and Paula T. Hammond. “Carbon Nanotube–polyaniline Core–shell Nanostructured Hydrogel for Electrochemical Energy Storage.” RSC Adv. 5, no. 48 (2015): 37970–37977. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biological Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | en_US |
dc.contributor.department | Koch Institute for Integrative Cancer Research at MIT | en_US |
dc.contributor.approver | Hammond, Paula T. | en_US |
dc.contributor.mitauthor | Chen, Po-Yen | en_US |
dc.contributor.mitauthor | Dorval Courchesne, Noemie-Manuelle | en_US |
dc.contributor.mitauthor | Hyder, Md Nasim | en_US |
dc.contributor.mitauthor | Qi, Jifa | en_US |
dc.contributor.mitauthor | Belcher, Angela M. | en_US |
dc.contributor.mitauthor | Hammond, Paula T. | en_US |
dc.relation.journal | RSC Advances | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Chen, Po-Yen; Dorval Courchesne, Noémie-Manuelle; Hyder, Md Nasim; Qi, Jifa; Belcher, Angela M.; Hammond, Paula T. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-9353-7453 | |
mit.license | OPEN_ACCESS_POLICY | en_US |