Show simple item record

dc.contributor.authorHaotian Liu
dc.contributor.authorDaniel, Luca
dc.contributor.authorNgai Wong, Luca
dc.date.accessioned2016-05-12T17:49:13Z
dc.date.available2016-05-12T17:49:13Z
dc.date.issued2015-03
dc.date.submitted2015-01
dc.identifier.issn0278-0070
dc.identifier.issn1937-4151
dc.identifier.urihttp://hdl.handle.net/1721.1/102475
dc.description.abstractModel order reduction of nonlinear circuits (especially highly nonlinear circuits) has always been a theoretically and numerically challenging task. In this paper, we utilize tensors (namely, a higher order generalization of matrices) to develop a tensor-based nonlinear model order reduction algorithm we named TNMOR for the efficient simulation of nonlinear circuits. Unlike existing nonlinear model order reduction methods, in TNMOR high-order nonlinearities are captured using tensors, followed by decomposition and reduction to a compact tensor-based reduced-order model. Therefore, TNMOR completely avoids the dense reduced-order system matrices, which in turn allows faster simulation and a smaller memory requirement if relatively low-rank approximations of these tensors exist. Numerical experiments on transient and periodic steady-state analyses confirm the superior accuracy and efficiency of TNMOR, particularly in highly nonlinear scenarios.en_US
dc.description.sponsorshipResearch Grants Council (Hong Kong, China) (General Research Fund Project 718213E)en_US
dc.description.sponsorshipResearch Grants Council (Hong Kong, China) (General Research Fund Project 17208514)en_US
dc.description.sponsorshipUniversity of Hong Kong. University Research Committeeen_US
dc.description.sponsorshipMIT International Science and Technology Initiativesen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TCAD.2015.2409272en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Daniel via Phoebe Ayersen_US
dc.titleModel Reduction and Simulation of Nonlinear Circuits via Tensor Decompositionen_US
dc.typeArticleen_US
dc.identifier.citationHaotian Liu, Luca Daniel, and Ngai Wong. “Model Reduction and Simulation of Nonlinear Circuits via Tensor Decomposition.” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34, no. 7 (July 2015): 1059–1069.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDaniel, Lucaen_US
dc.contributor.mitauthorDaniel, Lucaen_US
dc.relation.journalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHaotian Liu; Daniel, Luca; Ngai Wong, Lucaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5880-3151
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record