Show simple item record

dc.contributor.authorChen, Naiyan
dc.contributor.authorSugihara, Hiroki
dc.contributor.authorSur, Mriganka
dc.date.accessioned2016-05-16T12:39:24Z
dc.date.available2016-05-16T12:39:24Z
dc.date.issued2015-04
dc.date.submitted2015-01
dc.identifier.issn1097-6256
dc.identifier.issn1546-1726
dc.identifier.urihttp://hdl.handle.net/1721.1/102502
dc.description.abstractCholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.en_US
dc.description.sponsorshipSingapore. Agency for Science, Technology and Research (Fellowship)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01EY007023)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01EY018648)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant U01NS090473)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant EF1451125)en_US
dc.description.sponsorshipSimons Foundationen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nn.4002en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleAn acetylcholine-activated microcircuit drives temporal dynamics of cortical activityen_US
dc.typeArticleen_US
dc.identifier.citationChen, Naiyan, Hiroki Sugihara, and Mriganka Sur. “An Acetylcholine-Activated Microcircuit Drives Temporal Dynamics of Cortical Activity.” Nat Neurosci 18, no. 6 (April 27, 2015): 892–902.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentPicower Institute for Learning and Memoryen_US
dc.contributor.mitauthorChen, Naiyanen_US
dc.contributor.mitauthorSugihara, Hirokien_US
dc.contributor.mitauthorSur, Mrigankaen_US
dc.relation.journalNature Neuroscienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChen, Naiyan; Sugihara, Hiroki; Sur, Mrigankaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2442-5671
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record