MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

One and Done? Optimal Decisions From Very Few Samples

Author(s)
Vul, Edward; Goodman, Noah; Griffiths, Thomas L.; Tenenbaum, Joshua B.
Thumbnail
DownloadTenenbaum_One and done.pdf (736.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In many learning or inference tasks human behavior approximates that of a Bayesian ideal observer, suggesting that, at some level, cognition can be described as Bayesian inference. However, a number of findings have highlighted an intriguing mismatch between human behavior and standard assumptions about optimality: People often appear to make decisions based on just one or a few samples from the appropriate posterior probability distribution, rather than using the full distribution. Although sampling-based approximations are a common way to implement Bayesian inference, the very limited numbers of samples often used by humans seem insufficient to approximate the required probability distributions very accurately. Here, we consider this discrepancy in the broader framework of statistical decision theory, and ask: If people are making decisions based on samples—but as samples are costly—how many samples should people use to optimize their total expected or worst-case reward over a large number of decisions? We find that under reasonable assumptions about the time costs of sampling, making many quick but locally suboptimal decisions based on very few samples may be the globally optimal strategy over long periods. These results help to reconcile a large body of work showing sampling-based or probability matching behavior with the hypothesis that human cognition can be understood in Bayesian terms, and they suggest promising future directions for studies of resource-constrained cognition.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/102508
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Cognitive Science
Publisher
Wiley Blackwell
Citation
Vul, Edward, Noah Goodman, Thomas L. Griffiths, and Joshua B. Tenenbaum. “One and Done? Optimal Decisions From Very Few Samples.” Cogn Sci 38, no. 4 (January 28, 2014): 599–637.
Version: Original manuscript
ISSN
03640213
1551-6709

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.