MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bias reformulation for one-shot function induction

Author(s)
Lin, Dianhuan; Dechter, Eyal; Ellis, Kevin M.; Tenenbaum, Joshua B.; Muggleton, Stephen H.
Thumbnail
DownloadTenenbaum_Bias reformulation.pdf (172.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
In recent years predicate invention has been underexplored as a bias reformulation mechanism within Inductive Logic Programming due to difficulties in formulating efficient search mechanisms. However, recent papers on a new approach called Meta-Interpretive Learning have demonstrated that both predicate invention and learning recursive predicates can be efficiently implemented for various fragments of definite clause logic using a form of abduction within a meta-interpreter. This paper explores the effect of bias reformulation produced by Meta-Interpretive Learning on a series of Program Induction tasks involving string transformations. These tasks have real-world applications in the use of spreadsheet technology. The existing implementation of program induction in Microsoft's FlashFill (part of Excel 2013) already has strong performance on this problem, and performs one-shot learning, in which a simple transformation program is generated from a single example instance and applied to the remainder of the column in a spreadsheet. However, no existing technique has been demonstrated to improve learning performance over a series of tasks in the way humans do. In this paper we show how a functional variant of the recently developed MetagolD system can be applied to this task. In experiments we study a regime of layered bias reformulation in which size-bounds of hypotheses are successively relaxed in each layer and learned programs re-use invented predicates from previous layers. Results indicate that this approach leads to consistent speed increases in learning, more compact definitions and consistently higher predictive accuracy over successive layers. Comparison to both FlashFill and human performance indicates that the new system, MetagolDF, has performance approaching the skill level of both an existing commercial system and that of humans on one-shot learning over the same tasks. The induced programs are relatively easily read and understood by a human programmer.
Date issued
2014
URI
http://hdl.handle.net/1721.1/102524
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Publisher
IOS Press
Citation
Dianhuan, Lin, Dechter Eyal, Ellis Kevin, Tenenbaum Joshua, and Muggleton Stephen. “Bias Reformulation for One-Shot Function Induction.” Frontiers in Artificial Intelligence and Applications, 2014, 525–530.
Version: Author's final manuscript
ISBN
978-1-61499-419-0-525

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.