MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • CSAIL Digital Archive
  • CSAIL Technical Reports (July 1, 2003 - present)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Practical Theory: Bayesian Optimization and Optimal Exploration

Author(s)
Kawaguchi, Kenji
Thumbnail
DownloadMIT-CSAIL-TR-2016-006.pdf (2.494Mb)
Other Contributors
Learning and Intelligent Systems
Advisor
Leslie Kaelbling
Terms of use
Creative Commons Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This thesis discusses novel principles to improve the theoretical analyses of a class of methods, aiming to provide theoretically driven yet practically useful methods. The thesis focuses on a class of methods, called bound-based search, which includes several planning algorithms (e.g., the A* algorithm and the UCT algorithm), several optimization methods (e.g., Bayesian optimization and Lipschitz optimization), and some learning algorithms (e.g., PAC-MDP algorithms). For Bayesian optimization, this work solves an open problem and achieves an exponential convergence rate. For learning algorithms, this thesis proposes a new analysis framework, called PAC-RMDP, and improves the previous theoretical bounds. The PAC-RMDP framework also provides a unifying view of some previous near-Bayes optimal and PAC-MDP algorithms. All proposed algorithms derived on the basis of the new principles produced competitive results in our numerical experiments with standard benchmark tests.
Description
SM thesis
Date issued
2016-05-26
URI
http://hdl.handle.net/1721.1/102796
Series/Report no.
MIT-CSAIL-TR-2016-006
Keywords
PAC-MDP, AI planning, Global optimization

Collections
  • CSAIL Technical Reports (July 1, 2003 - present)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.