Genetic encoding of DNA nanostructures and their self-assembly in living bacteria
Author(s)
Elbaz, Johann; Yin, Peng; Voigt, Christopher A.
DownloadElbaz-2016-Genetic encoding.pdf (1.394Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
The field of DNA nanotechnology has harnessed the programmability of DNA base pairing to direct single-stranded DNAs (ssDNAs) to assemble into desired 3D structures. Here, we show the ability to express ssDNAs in Escherichia coli (32–205 nt), which can form structures in vivo or be purified for in vitro assembly. Each ssDNA is encoded by a gene that is transcribed into non-coding RNA containing a 3′-hairpin (HTBS). HTBS recruits HIV reverse transcriptase, which nucleates DNA synthesis and is aided in elongation by murine leukemia reverse transcriptase. Purified ssDNA that is produced in vivo is used to assemble large 1D wires (300 nm) and 2D sheets (5.8 μm2) in vitro. Intracellular assembly is demonstrated using a four-ssDNA crossover nanostructure that recruits split YFP when properly assembled. Genetically encoding DNA nanostructures provides a route for their production as well as applications in living cells.
Date issued
2016-04Department
Massachusetts Institute of Technology. Synthetic Biology Center; Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Synthetic Biology CenterJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Elbaz, Johann, Peng Yin, and Christopher A. Voigt. “Genetic Encoding of DNA Nanostructures and Their Self-Assembly in Living Bacteria.” Nat Comms 7 (April 19, 2016): 11179.
Version: Final published version
ISSN
2041-1723